SESSION 2001

France metropolitaine – Antilles – Guyane - Réunion

BACCALAUREAT PROFESSIONNEL - Toutes options

Les candidats traiteront chaque partie sur des feuilles séparées

PARTIE: SCIENCES PHYSIQUES

EXERCICE 1 11 points

Le tableau suivant donne les résultats d'analyse d'une eau de forage avant et après traitement.

Paramètres physico-chimiques			
	Eau issue du forage	Eau Traitée	Normes limites admissibles
pН	7,2	7,1	6,5 à 9
Température (°C)	24,7	24,5	25
	Conce	ntration en ions	
	Eau issue du forage	Eau Traitée	Normes limites supérieures
	(mg/L)	(mg/L)	admissibles (mg/L)
nitrate	62	15,1	50
bicarbonate	370	3,79	-
chlorure	16	5,33	200
sulfate	150	130	250
sodium	15,9	15,4	150
calcium	164	80	100
magnésium	9	7	50

- 1. Donner le nom et la formule de 3 anions présents dans l'eau de forage.
- 2. A partir des données du tableau, identifier l'anion qui rend l'eau de forage non potable.
- Relever les concentrations massiques de cet anion avant et après traitement.
 En déduire la différence de concentration puis exprimer cette différence en pourcentage.
- 4. Calculer la concentration molaire de l'eau traitée en ions calcium.
- Relever la valeur du pH de l'eau traitée.
 Calculer sa concentration molaire en ions H3O⁺ (ou H⁺) et en ions OH ⁻.
- 6. La mesure de la conductivité des eaux avant et après traitement donne les valeurs suivantes : 0,56 mS.cm⁻¹ et 0,95 mS.cm⁻¹

Attribuer chacune de ces conductivités à l'eau de forage et à l'eau traitée. Justifier la réponse.

Données : Ca : 40 g.mol^{-1} ; produit ionique de l'eau : $K_e = 10^{-14}$